
PM2.5 Air Quality Sensor
Created by lady ada

https://learn.adafruit.com/pm25-air-quality-sensor

Last updated on 2024-06-03 02:16:39 PM EDT

©Adafruit Industries Page 1 of 22

3

4

7

12

19

22

Table of Contents

Overview

Arduino Code
• Wiring

Python & CircuitPython
• CircuitPython Microcontroller Wiring
• Python Computer Wiring
• CircuitPython & Python Usage
• CircuitPython Microcontroller
• Linux/Computer/Raspberry Pi with Python

WipperSnapper
• What is WipperSnapper
• Wiring
• Usage

Usage Notes
• Standard vs. Environmental Concentration
• Analysis Report of Using PM2.5

Downloads
• Files:

©Adafruit Industries Page 2 of 22

Overview

Breathe easy, knowing that you can track and sense the quality of the air around you
with the PM2.5 Air Quality Sensor with Breadboard Adapter particulate sensor. Mad
Max & Furiosa definitely should have hooked up one of these in their truck while
scavenging the dusty desert wilderness of post-apocalyptic Australia (https://adafru.it/
CiF). And for those of us not living in an Outback dystopia, this sensor + adapter kit is
great for monitoring air quality, and super easy to use!

WITNESS real-time, reliable measurement of PM2.5 dust concentrations! (PM2.5
refers to particles that are 2.5 microns or smaller in diameter.) This sensor uses laser
scattering to radiate suspending particles in the air, then collects scattering light to
obtain the curve of scattering light change with time. The microprocessor calculates
equivalent particle diameter and the number of particles with different diameter per
unit volume.

©Adafruit Industries Page 3 of 22

https://en.wikipedia.org/wiki/Mad_Max
https://en.wikipedia.org/wiki/Mad_Max
https://en.wikipedia.org/wiki/Mad_Max

You'll need to hook this up to a microcontroller with UART input (or you could
theoretically wire it up to a USB-Serial converter and parse the data on a
computer (http://adafru.it/3309)) - we have code for both Arduino and CircuitPython.
9600 baud data streams out once per second, you'll get:

PM1.0, PM2.5 and PM10.0 concentration in both standard & enviromental units
Particulate matter per 0.1L air, categorized into 0.3um, 0.5um, 1.0um, 2.5um,
5.0um and 10um size bins

As well as checksum, in binary format (its fairly easy to parse the binary format, but it
doesn't come out as pure readable ascii text)

We give you the sensor box as well as the cable and a 0.1" / 2.54mm breakout board
so you can wire it easily. You only need power plus one data pin (for the UART TX).
Power is 5V, logic is 3.3V

Arduino Code
Using the PM2.5 with Arduino is a simple matter of wiring up it to your Arduino-
compatible microcontroller, installing the Adafruit PM25AQI (https://adafru.it/Mej)
library we've written, and running the provided example code.

This code will get you started with any Arduino compatible (e.g. Arduino UNO,
Adafruit Metro, ESP8266, Teensy, etc. As long as you have either a hardware serial or
software serial port that can run at 9600 baud.

•
•

©Adafruit Industries Page 4 of 22

https://www.adafruit.com/product/3309
https://www.adafruit.com/product/3309
https://www.adafruit.com/product/3309
https://github.com/adafruit/Adafruit_PM25AQI

Wiring
Wiring is simple! Power the sensor with +5V and GND and then connect the data out
pin (3.3V logic) to the serial input pin you'll use. Whether or not you are using
hardware or software UART/serial may affect the pin, so adjust that as necessary. This
wiring works for ATMega328P-based boards for sure, with Digital #2 as the data pin:

/* Test sketch for Adafruit PM2.5 sensor with UART or I2C */

#include "Adafruit_PM25AQI.h"

// If your PM2.5 is UART only, for UNO and others (without hardware serial)
// we must use software serial...
// pin #2 is IN from sensor (TX pin on sensor), leave pin #3 disconnected
// comment these two lines if using hardware serial
//#include <SoftwareSerial.h>
//SoftwareSerial pmSerial(2, 3);

Adafruit_PM25AQI aqi = Adafruit_PM25AQI();

void setup() {
// Wait for serial monitor to open
Serial.begin(115200);
while (!Serial) delay(10);

Serial.println("Adafruit PMSA003I Air Quality Sensor");

// Wait one second for sensor to boot up!
delay(1000);

// If using serial, initialize it and set baudrate before starting!
// Uncomment one of the following
//Serial1.begin(9600);
//pmSerial.begin(9600);

// There are 3 options for connectivity!
if (! aqi.begin_I2C()) { // connect to the sensor over I2C
//if (! aqi.begin_UART(&Serial1)) { // connect to the sensor over hardware serial
//if (! aqi.begin_UART(&pmSerial)) { // connect to the sensor over software

To use this example with the PM2.5 sensor, you'll need to make some changes.

©Adafruit Industries Page 5 of 22

serial
Serial.println("Could not find PM 2.5 sensor!");
while (1) delay(10);

}

Serial.println("PM25 found!");
}

void loop() {
PM25_AQI_Data data;

if (! aqi.read(&data)) {
Serial.println("Could not read from AQI");
delay(500); // try again in a bit!
return;

}
Serial.println("AQI reading success");

Serial.println();
Serial.println(F("---------------------------------------"));
Serial.println(F("Concentration Units (standard)"));
Serial.println(F("---------------------------------------"));
Serial.print(F("PM 1.0: ")); Serial.print(data.pm10_standard);
Serial.print(F("\t\tPM 2.5: ")); Serial.print(data.pm25_standard);
Serial.print(F("\t\tPM 10: ")); Serial.println(data.pm100_standard);
Serial.println(F("Concentration Units (environmental)"));
Serial.println(F("---------------------------------------"));
Serial.print(F("PM 1.0: ")); Serial.print(data.pm10_env);
Serial.print(F("\t\tPM 2.5: ")); Serial.print(data.pm25_env);
Serial.print(F("\t\tPM 10: ")); Serial.println(data.pm100_env);
Serial.println(F("---------------------------------------"));
Serial.print(F("Particles > 0.3um / 0.1L air:"));

Serial.println(data.particles_03um);
Serial.print(F("Particles > 0.5um / 0.1L air:"));

Serial.println(data.particles_05um);
Serial.print(F("Particles > 1.0um / 0.1L air:"));

Serial.println(data.particles_10um);
Serial.print(F("Particles > 2.5um / 0.1L air:"));

Serial.println(data.particles_25um);
Serial.print(F("Particles > 5.0um / 0.1L air:"));

Serial.println(data.particles_50um);
Serial.print(F("Particles > 10 um / 0.1L air:"));

Serial.println(data.particles_100um);
Serial.println(F("---------------------------------------"));

delay(1000);
}

Comment out the following line by adding " // " before it:

if (! aqi.begin_I2C()) { // connect to the sensor over I2C

Uncomment the following lines by removing the " // " from the beginning:

//#include <SoftwareSerial.h>
//SoftwareSerial pmSerial(2, 3);

//pmSerial.begin(9600);

//if (! aqi.begin_UART(&pmSerial)) { // connect to the sensor over software
serial

©Adafruit Industries Page 6 of 22

Once the changes are made, upload this code to your board, and open up the serial
console at 115200 baud. You'll see data printed out once a second, with all the
measurements. For a clean-air indoor room you'll see something like this:

If you hold up a smoking soldering iron or something else that creates a lot of dust,
you'll see much higher numbers!

Note that the numbers are very precise looking but we don't believe that they're
going to be perfectly accurate, calibration may be necessary!

Python & CircuitPython
It's easy to use the PM2.5 and the Adafruit CircuitPython PM25 (https://adafru.it/Mek)
module. This library allows you to easily write Python code that reads particle

©Adafruit Industries Page 7 of 22

https://github.com/adafruit/Adafruit_CircuitPython_PM25

concentrations, and particle diameter and the number of particles with different
diameters per unit volume.

You can use this sensor with any CircuitPython microcontroller board or with a
computer that has GPIO and Python thanks to Adafruit_Blinka, our CircuitPython-for-
Python compatibility library (https://adafru.it/BSN).

CircuitPython Microcontroller Wiring
First, connect the sensor to your microcontroller board using UART (a serial port).

Here is an example of it connected to a Feather M0 using UART:

Sensor VCC to board 5V
Sensor GND to board GND
Sensor TX to board RX
Remember: RX does not connect to RX!

Python Computer Wiring
Since there's dozens of Linux computers/boards you can use we will show wiring for
Raspberry Pi. For other platforms, please visit the guide for CircuitPython on Linux to
see whether your platform is supported (https://adafru.it/BSN).

Here you have two options: An external USB-to-serial converter, or the built-in UART
on the Pi's RX pin. Here's an example of wiring up the USB-to-serial converter (http://
adafru.it/954):

©Adafruit Industries Page 8 of 22

https://learn.adafruit.com/circuitpython-on-raspberrypi-linux
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux
https://learn.adafruit.com//assets/49960
https://learn.adafruit.com//assets/49960
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux
https://www.adafruit.com/product/954

Sensor VCC to USB 5V
Sensor GND to USB GND
Sensor TX to USB RX (white wire)
Remember: RX does not connect to RX!

Here's an example using the Pi's built-in UART:

Sensor VCC to Pi 5V
Sensor GND to Pi GND
Sensor TX to Pi RX
Remember: RX does not connect to RX!

If you want to use the built-in UART, you'll need to disable the serial console and
enable the serial port hardware in raspi-config. See the UART/Serial section of the
CircuitPython on Raspberry Pi guide (https://adafru.it/CEk) for detailed instructions on
how to do this.

CircuitPython & Python Usage
To demonstrate the PM2.5 in CircuitPython and Python, let's look at a complete
program example.

For single board computers other than the Raspberry Pi, the serial port may be
tied to the console or not be available to the user. Please see the board
documentation to see how the serial port may be used

To use the pm25_simpletest.py with the PM2.5 sensor, you'll have to make some
changes.

©Adafruit Industries Page 9 of 22

https://learn.adafruit.com//assets/83708
https://learn.adafruit.com//assets/83708
https://learn.adafruit.com//assets/83709
https://learn.adafruit.com//assets/83709
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux/uart-serial
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux/uart-serial

CircuitPython Microcontroller

With a CircuitPython microcontroller, save this file as code.py on your board. Then
comment out the following lines by inserting a ' # ' before each one:

i2c = busio.I2C(board.SCL, board.SDA, frequency=100000)

pm25 = adafruit_pm25.i2c.PM25_I2C(i2c, reset_pin)

And uncomment the following lines by removing the ' # ' (hash and space both!)
before each one:

uart = busio.UART(board.TX, board.RX, baudrate=9600)

pm25 = adafruit_pm25.uart.PM25_UART(uart, reset_pin)

Then, open up the serial console (https://adafru.it/Bec) to see its output.

Linux/Computer/Raspberry Pi with Python

When using a USB to serial cable or a Raspberry Pi, comment out the following lines
by inserting a ' # ' before each one:

i2c = busio.I2C(board.SCL, board.SDA, frequency=100000)

pm25 = adafruit_pm25.i2c.PM25_I2C(i2c, reset_pin)

For Raspberry Pi, uncomment the following lines by removing the ' # ' (hash and
space both!) before each one:

import serial
uart = serial.Serial("/dev/ttyS0", baudrate=9600, timeout=0.25)

For a USB to serial cable, uncomment the following lines by removing the ' # ' (hash
and space both!) before each one:

import serial
uart = serial.Serial("/dev/ttyUSB0", baudrate=9600, timeout=0.25)

Install the python serial with library with

pip3 install pyserial

Now you're ready to run the program with the following command:

©Adafruit Industries Page 10 of 22

https://learn.adafruit.com/welcome-to-circuitpython/kattni-connecting-to-the-serial-console

python3 pm25_simpletest.py

SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries
SPDX-License-Identifier: MIT

"""
Example sketch to connect to PM2.5 sensor with either I2C or UART.
"""

pylint: disable=unused-import
import time
import board
import busio
from digitalio import DigitalInOut, Direction, Pull
from adafruit_pm25.i2c import PM25_I2C

reset_pin = None
If you have a GPIO, its not a bad idea to connect it to the RESET pin
reset_pin = DigitalInOut(board.G0)
reset_pin.direction = Direction.OUTPUT
reset_pin.value = False

For use with a computer running Windows:
import serial
uart = serial.Serial("COM30", baudrate=9600, timeout=1)

For use with microcontroller board:
(Connect the sensor TX pin to the board/computer RX pin)
uart = busio.UART(board.TX, board.RX, baudrate=9600)

For use with Raspberry Pi/Linux:
import serial
uart = serial.Serial("/dev/ttyS0", baudrate=9600, timeout=0.25)

For use with USB-to-serial cable:
import serial
uart = serial.Serial("/dev/ttyUSB0", baudrate=9600, timeout=0.25)

Connect to a PM2.5 sensor over UART
from adafruit_pm25.uart import PM25_UART
pm25 = PM25_UART(uart, reset_pin)

Create library object, use 'slow' 100KHz frequency!
i2c = busio.I2C(board.SCL, board.SDA, frequency=100000)
Connect to a PM2.5 sensor over I2C
pm25 = PM25_I2C(i2c, reset_pin)

print("Found PM2.5 sensor, reading data...")

while True:
time.sleep(1)

try:
aqdata = pm25.read()
print(aqdata)

except RuntimeError:
print("Unable to read from sensor, retrying...")
continue

print()
print("Concentration Units (standard)")
print("---------------------------------------")
print(

"PM 1.0: %d\tPM2.5: %d\tPM10: %d"
% (aqdata["pm10 standard"], aqdata["pm25 standard"], aqdata["pm100

©Adafruit Industries Page 11 of 22

standard"])
)
print("Concentration Units (environmental)")
print("---------------------------------------")
print(

"PM 1.0: %d\tPM2.5: %d\tPM10: %d"
% (aqdata["pm10 env"], aqdata["pm25 env"], aqdata["pm100 env"])

)
print("---------------------------------------")
print("Particles > 0.3um / 0.1L air:", aqdata["particles 03um"])
print("Particles > 0.5um / 0.1L air:", aqdata["particles 05um"])
print("Particles > 1.0um / 0.1L air:", aqdata["particles 10um"])
print("Particles > 2.5um / 0.1L air:", aqdata["particles 25um"])
print("Particles > 5.0um / 0.1L air:", aqdata["particles 50um"])
print("Particles > 10 um / 0.1L air:", aqdata["particles 100um"])
print("---------------------------------------")

You should see output looking something like the following:

That's all there is to using the PM2.5 air quality sensor with CircuitPython!

WipperSnapper
There is report of this sensor stopping sending data after 5-15minutes...
Please add your feedback to the github issue too if you also experience this. Try
to include device information like which board, wippersnapper version, other
attached components, wiring diagram/photos:
https://github.com/adafruit/Adafruit_Wippersnapper_Arduino/issues/546

©Adafruit Industries Page 12 of 22

https://github.com/adafruit/Adafruit_Wippersnapper_Arduino/issues/546

What is WipperSnapper

WipperSnapper is a firmware designed to turn any WiFi-capable board into an
Internet-of-Things device without programming a single line of code. WipperSnapper
connects to Adafruit IO (https://adafru.it/fsU), a web platform designed (by
Adafruit! (https://adafru.it/Bo5)) to display, respond, and interact with your project's
data.

Simply load the WipperSnapper firmware onto your board, add credentials, and plug it
into power. Your board will automatically register itself with your Adafruit IO account.

From there, you can add components to your board such as buttons, switches,
potentiometers, sensors, and more! Components are dynamically added to hardware,
so you can immediately start interacting, logging, and streaming the data your
projects produce without writing code.

If you've never used WipperSnapper, click below to read through the quick start guide
before continuing.

Quickstart: Adafruit IO
WipperSnapper

https://adafru.it/Vfd

©Adafruit Industries Page 13 of 22

https://io.adafruit.com/
https://www.adafruit.com/about
https://www.adafruit.com/about
https://learn.adafruit.com/quickstart-adafruit-io-wippersnapper

Wiring

First, wire up a PM2.5 sensor to your board exactly as follows using UART (a serial
port). Here is an example of the PM2.5 sensor wired to an Adafruit ESP32 Feather
V2 (http://adafru.it/5400) using UART:

Board 5V/VUSB to sensor VCC
Board GND to sensor GND
Board RX to sensor TX

Usage

Connect your board to Adafruit IO Wippersnapper and navigate to the
WipperSnapper board list (https://adafru.it/TAu).

On this page, select the WipperSnapper board you're using to be brought to the
board's interface page.

If you do not see your board listed here - you need to connect your board to Adafruit
IO (https://adafru.it/Vfd) first.

©Adafruit Industries Page 14 of 22

https://www.adafruit.com/product/5400
https://www.adafruit.com/product/5400
https://learn.adafruit.com//assets/128583
https://learn.adafruit.com//assets/128583
https://io.adafruit.com/wippersnapper
https://io.adafruit.com/wippersnapper
https://learn.adafruit.com/quickstart-adafruit-io-wippersnapper
https://learn.adafruit.com/quickstart-adafruit-io-wippersnapper

On the device page, quickly check that
you're running the latest version of the
WipperSnapper firmware.

The device tile on the left indicates the
version number of the firmware running on
the connected board.

If the firmware version is green with a
checkmark - continue with this guide.
If the firmware version is red with an
exclamation mark "!" - update to the latest
WipperSnapper firmware (https://adafru.it/
Vfd) on your board before continuing.

Now you're ready to add your sensor component to your device.

Click the New Component button or the + button to bring up the component picker.

Adafruit IO supports a large amount of components. To quickly find your sensor,
type PMS5003 into the search bar, then select the PMS5003 component.

©Adafruit Industries Page 15 of 22

https://learn.adafruit.com//assets/128437
https://learn.adafruit.com//assets/128437
https://learn.adafruit.com//assets/128438
https://learn.adafruit.com//assets/128438
https://learn.adafruit.com/quickstart-adafruit-io-wippersnapper
https://learn.adafruit.com/quickstart-adafruit-io-wippersnapper

On the component configuration page, the PMS5003's sensor settings should be
listed.

The Send Every option is specific to each sensor's measurements. This option will tell
the Feather how often it should read from the PMS5003 sensor and send the data to
Adafruit IO. Measurements can range from every 30 seconds to every 24 hours.

For this example, set the Send Every interval to every 30 seconds.

©Adafruit Industries Page 16 of 22

Your device interface should now show the sensor components you created. After the
interval you configured elapses, WipperSnapper will automatically read values from
the sensor(s) and send them to Adafruit IO.

©Adafruit Industries Page 17 of 22

To view the data that has been logged from the sensor, click on the graph next to the
sensor name.

Here you can see the feed history and edit things about the feed such as the name,
privacy, webhooks associated with the feed and more. If you want to learn more
about how feeds work, check out this page (https://adafru.it/10aZ).

©Adafruit Industries Page 18 of 22

https://learn.adafruit.com/all-the-internet-of-things-episode-four-adafruit-io/advanced-feeds

Usage Notes
Standard vs. Environmental Concentration

The PM2.5 returns two sets of concentrations: standard and environmental.

Standard refers to the concentration at standard pressure (i.e. sea level).

Environmental refers to the concentration that depends on ambient pressure.

Analysis Report of Using PM2.5

StanJ wrote up an amazing analysis report of using the PM2.5 sensor in their
lab (https://adafru.it/FDX), and we think its helpful for others to understand what and
how the sensor works and what to expect from it! We've duplicated it here as well:

I've read quite a lot on the PlanTower sensors, although I'm nothing like an
expert :-). The CF readings are 'Calibration Factory' and aren't useful; the
'Environmental' or 'Ambient' concentration readings are the data you want
for air quality measurements. I'm using the PMS5003 for a continuous
check on cleanroom quality, so I only use the raw Particle Counts as that's
the measurement specified in ISO 14644-1 .

©Adafruit Industries Page 19 of 22

https://forums.adafruit.com/viewtopic.php?f=48&t=136528&p=767725#p767725
https://forums.adafruit.com/viewtopic.php?f=48&t=136528&p=767725#p767725
https://forums.adafruit.com/viewtopic.php?f=48&t=136528&p=767725#p767725

As Solaria123 noted in viewtopic.php?f=19&t=135496 (https://adafru.it/doW),
the sensor estimates particles > 2.5um and doesn't (or can't) measure
them. The article at ResearchGate showed that a concentration composed
solely of larger particles wasn't seen by the sensor. For our cleanroom use
that's OK as the HEPA filters are more efficient as the particle size
increases. For non-filtered air it's a bit more of concern as the different
particle sizes are composed of different pollutants, so you might be
missing a pollutant if it's composed primarily of larger particles like pollen.

One amusing note in the translated PlanTower datasheet is "Only the
consistency among the PM sensors of PLANTOWER is promised and
ensured. And the sensor should not be checked with any third party
equipment." Several groups including AQICN.org have done exactly that,
and we have as well. The PlanTower sensor compares favorably with the
readings from our calibrated Beckman Particle Counter, although the
30-50% uncertainty on the PlanTower 0.3 and 0.5 um bins means you can't
get an exact comparison. We're only using the sensor for a rough check on
current air quality, not to verify compliance with ISO 14644.

A frustrating artifact of the PlanTower sensor is the sampling rate versus
data output. With small change between readings the sensor only updates
the counts every 2.3 seconds, although it outputs data every second. That
means it may duplicate over half of the data, with no way to verify whether
any reading is a duplicate. For a normal home or outdoor setting you could

©Adafruit Industries Page 20 of 22

https://forums.adafruit.com/viewtopic.php?f=19&t=135496

simply discard any reading when the checksum is identical to the previous
data, as you're highly unlikely to have two successive samples with the
same values. In a cleanroom we're looking at very low particle counts, and
two successive samples might well be identical. The only way I could get
around that is by throwing away 2 of every 3 data packets to insure I'm
getting real counts, which increases the total sample time. I add the results
from 100 unique 0.1 liter samples to get a reading of particles in 10 liters of
air for my measurement, which means 300 samples with 2/3rds of the data
thrown away.

 amb=[003a 005c 0061] raw=[386a 1160 0325 004c 000b 0001] csum=0542
 amb=[003b 005d 0063] raw=[38cd 1175 033c 0054 000e 0004] csum=05ea
 amb=[003c 0060 0065] raw=[398a 11ba 033c 0054 000a 0003] csum=05f4
 amb=[003c 0060 0066] raw=[3a8c 120f 0340 0050 000d 0003] csum=0555
 amb=[003d 0060 0066] raw=[3b04 122e 0333 0050 000d 0003] csum=04e1
 amb=[003c 005e 0064] raw=[3b04 122a 0339 0056 000b 0003] csum=04dc
 amb=[003c 005e 0064] raw=[3b04 122a 0339 0056 000b 0003] csum=04dc duplicate
 amb=[003c 005e 0064] raw=[3b04 122a 0339 0056 000b 0003] csum=04dc duplicate
 amb=[003c 005c 0062] raw=[3b22 1232 0330 004b 000a 0003] csum=04e2
 amb=[003c 005c 0062] raw=[3b22 1232 0330 004b 000a 0003] csum=04e2 duplicate
 amb=[003c 005c 0062] raw=[3b22 1232 0330 004b 000a 0003] csum=04e2 duplicate
 amb=[003b 0059 005f] raw=[3a7a 1211 030e 0043 000a 0003] csum=04de
 amb=[003a 0058 005e] raw=[3a7a 1211 030e 0043 000a 0003] csum=04d8
 amb=[003a 0058 005e] raw=[3a7a 1211 030e 0043 000a 0003] csum=04d8 duplicate
 amb=[003a 0058 005e] raw=[3a35 11fa 030c 003b 0009 0003] csum=056e

What you're seeing above is the 1 second data window sliding along the
(typical) 2.3 second sampling window. When the data changes significantly
between samples the sensor shortens the sample window to 200-800ms,
which may be why the first 6 data points show unique numbers (faster
sampling rate).

The readings above are in my home, and I smoke so the particle counts
vary wildly about 1000:1 over time with a decent quality air filter. When I'm
home I run the air handler fan continuously to level out the temperature
over the house, and when I'm away I let the fan cycle with the AC or heat.
You can see the difference below in how rapidly the particle counts fall off
with continuous filtering. The rapid fall off continuous curve is [sleeping],
and the slow fall off is cycling [away from home]. Data points are every 30
minutes.

©Adafruit Industries Page 21 of 22

Downloads

Files:
PMS5003 Datasheet / Manual (http://adafru.it/3686500323)•

©Adafruit Industries Page 22 of 22

https://cdn-shop.adafruit.com/product-files/3686/plantower-pms5003-manual_v2-3.pdf

	PM2.5 Air Quality Sensor
	Table of Contents
	Overview
	Arduino Code
	Python & CircuitPython
	WipperSnapper
	Usage Notes
	Downloads

	Overview
	Arduino Code
	Wiring
	Python & CircuitPython
	CircuitPython Microcontroller Wiring
	Python Computer Wiring
	CircuitPython & Python Usage
	CircuitPython Microcontroller
	Linux/Computer/Raspberry Pi with Python

	WipperSnapper
	What is WipperSnapper
	Wiring
	Usage

	Usage Notes
	Standard vs. Environmental Concentration
	Analysis Report of Using PM2.5

	Downloads
	Files:

