uUSB-PA5

uUSB-PA5 uUSB-PA5-II

Datasheet

Copyright © 2024 4D Systems

Contents

1. Description	3
2. Module Compatibility	0
3. Features	0
4. Pin Configuration and Summary	0
5. Typical Applications	0
6. Mechanical Dimensions	0
7. Schematic Diagram HW REV 1.0	0
8. Schematic Diagram HW REV 3.0	0
9. Revision History	0
10. Ordering Information	0
11. Legal Notice	0
11.1. Proprietary Information	0
11.2. Disclaimer of Warranties & Limitations of Liabilities	0

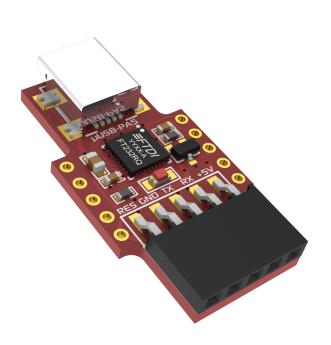
uUSB-PA5 Description

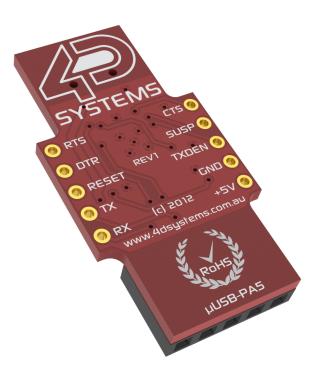
1. Description

The micro USB Programming Adaptor is a USB to TTL UART bridge converter which is simple, cost-effective, very small and easy to use.

There are 2 versions of the micro USB Programming Adaptor, the uUSB-PA5 and the uUSB-PA5-II.

They both use a mini-B type USB connector to connect to your PC. The uUSB-PA5 is based on the FTDI FT232RQ USB to Serial Bridge IC from FTDI Chip, while the uUSB-PA5-II is based on the SiLabs CP2104 USB to Serial Bridge IC from Silicon Labs.


From the perspective of programming 4D Systems modules, both the uUSB-PA5 and uUSB-PA5-II operate in the same way.


They provide the User with multi-baud rate serial data and access to additional signals such as flow control in a convenient 10-pin 2.54mm (0.1") pitch Dual-In-Line package.

The main 5-pin interface is a standard 2.54mm (0.1") pitch female header, designed to connect directly to a majority of the 4D Systems modules.

The uUSB-PA5 and uUSB-PA5-II are ideal for prototypes or production.

RX and TX signals are both 3.3V and 5V tolerant.

